

SECTION II: KINETICS AND BIOREACTOR DESIGN:

LESSON 9.3. - Enzymatic kinetics, microbial kinetics and metabolic stoichiometry – Models and Metabolic Stoichiometry

JAVIER CALZADA FUNES

Biotechnology Department, Biosciences School

UNIVERSIDAD FRANCISCO DE VITORIA

AIMS FOR TODAY'S LESSON

1.- KINDS OF MODELS

Using concepts as "segregation" and "structure".

- 2.- MALTHUS MODEL and its prediction capability.
- 3.- LOGISTIC EQUATION and its prediction capability.
- 4.- MONOD EQUATION and its prediction capability.
- 5.- OTHER MODELS

A model is a simplified representation of a biological phenomenon, designed to facilitate predictions and calculations that can be expressed in mathematical form

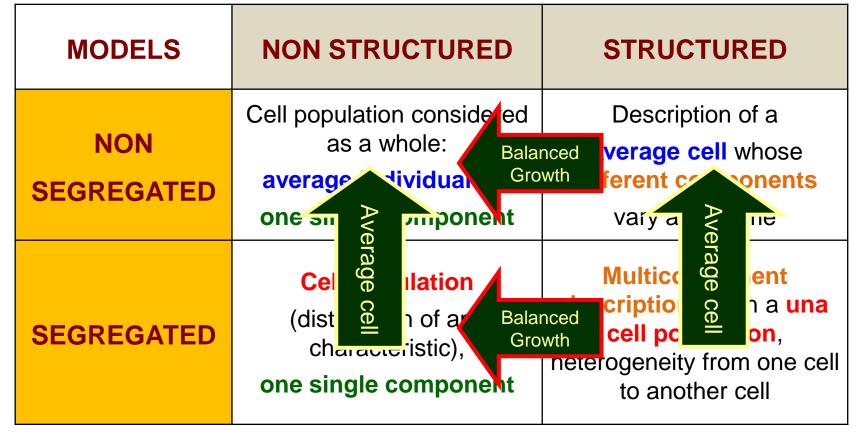
A model is an approximation to a real phenomenon

"All models are wrong but useful"

Modeling involves an agreement between the <u>reliability</u>, <u>degree</u> <u>of complexity</u> and the <u>effort</u> required to produce the model.

MODELS	NON STRUCTURED	STRUCTURED
NON SEGREGATED	Cell population considered as a whole: average individual and one single component	Description of a Average cell whose different components vary along time
SEGREGATED	Cell population (distribution of any characteristic), one single component	Multicomponent description within a una cell population, heterogeneity from one cell to another cell

Structured Model → considering a large network of enzymatic reactions within the cell.


Totally Segregated Model → considering that every cell in the culture is different in both size and metabolic state.

Balanced Growth → cell growth Is defined as a function of a limiting component, which controls its rate of limiting substrate, while the other components are in adequate concentrations and not limiting growth..

Average Cell → cells within a population are equal and behave in the same way.

Real case → Growth of cells in the system is segregated and structured → very complex to describe.

Simplest case → cell population is considered as a non-segregated and unstructured system.

MODELS NON STRUCTURED *SIMPLICITY whole: NON average **SEGREGATED** one single con

SEGREGATED

Cell population

(distribution of any characteristic),

one single component

STRUCTURED

Description of a

Average cell whose different components

vary along time

* COMPLEXITY and REALITY w within a una cell

- 1. Non structured Nor Segregated models
- 2. Structured but Non Segregated
- 3. Non structured but Segregated.

1. Non structured Nor Segregated models

- Growth Models.
- Models describing both growth and substrate uptake.
- Models describing growth, substrate uptake and product generation.
- 2. Structured but Non Segregated
- 3. Non structured but Segregated.

1. Non structured Nor Segregated models

- Growth Models.
- Models describing both growth and substrate uptake.
- Models describing growth, substrate uptake and product generation.

2. Structured but Non Segregated

- Cell Models
- Metabolic Models
- Chemically Structured Models
- 3. Non structured but Segregated

1. Non structured Nor Segregated models

Growth Models.

Models

- Models describing both growth and substrate uptake.
- Models describing growth, substrate uptake and product generation.

2. Structured but Non Segregated

- Cell Models
- Metabolic Models
- Chemically Structured Models.

3. Non structured but Segregated

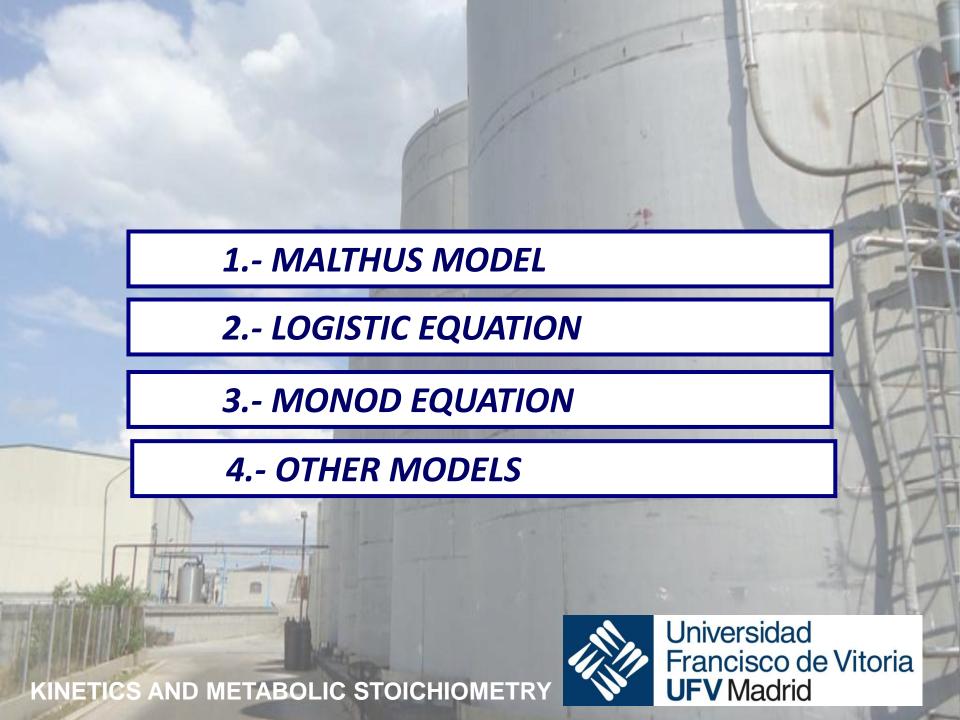
- Filamentous microorganisms
- Mixed culture

1. Non structured Nor Segregated models

- ➤ Growth Models.
- ➤ Models describing both growth and substrate uptake.
- ➤ Models describing growth, substrate uptake and product generation.

MAIN CHARACTERISTICS:

- Black box: what happens inside the cells?
- Non structured
- Homogeneously distributed population → Non segregated.
- Great simplification of the reality.
- Useful for technological purposes.
- Can be applied under different situations.


1. Non structured Nor Segregated models

- ➤ Growth Models.
- ➤ Models describing both growth and substrate uptake.
- ➤ Models describing growth, substrate uptake and product generation.

MAIN EXAMPLES:

- Malthus Law.
- Logistic Equation
- Monod equation

2. MALTHUS MODEL

1. Non structured Nor Segregated models

Substrate
$$\xrightarrow{Cells}$$
 Cells
$$\frac{d[X]}{dt} = r = \mu \cdot f([X])$$

- Describing one single process
- Simple equations only considering [X]

2. MALTHUS MODEL

1. Non structured Nor Segregated models

➤ Growth Models.

$$\frac{d[X]}{dt} = \mu \cdot f([X])$$

$$\frac{d[X]}{dt} = \mu \cdot [X] \Rightarrow [X] = [X]_0 \cdot \exp(\mu \cdot t)$$

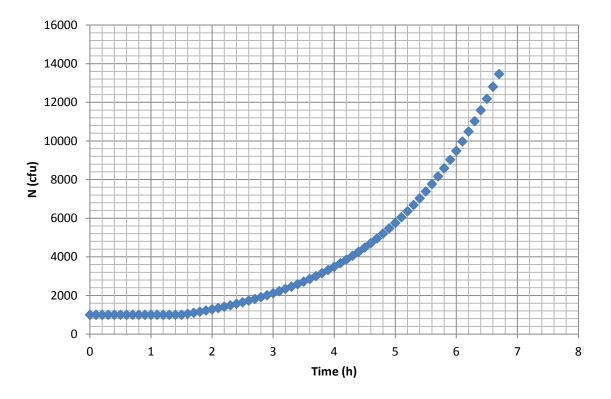
Valid only to describe the exponential growth stage.

Unable to describe the stationary phase.

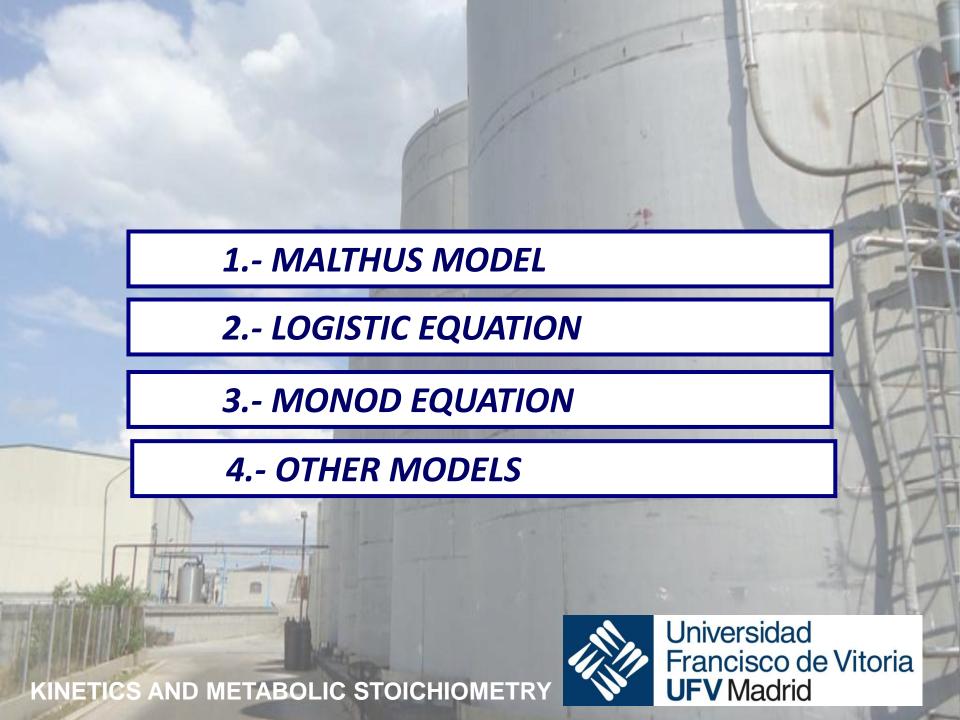
1. Non structured Nor Segregated models

$$t = 0 \Leftrightarrow [X] = [X]_{0}$$

$$t = t_{lat} \Leftrightarrow [X] = [X]_{0}$$


$$0 \le t < t_{lat} : \frac{d[X]}{dt} = 0 \Rightarrow X = X_{0}$$

$$t \ge t_{lat} : \frac{d[X]}{dt} = \mu \cdot [X] \Rightarrow X = X_{0} \cdot \exp[\mu \cdot (t - t_{lat})]$$



2. MALTHUS MODEL

1. Non structured Nor Segregated models

3. LOGISTIC EQUATION

1. Non structured Nor Segregated models

Substrate
$$\xrightarrow{Cells}$$
 Cells
$$\frac{d[X]}{dt} = r = \mu \cdot f([X])$$

- Describing one single process
- Simple equations only considering [X]

1. Non structured Nor Segregated models

$$\frac{d[X]}{dt} = \mu \cdot f([X])$$

$$\frac{d[X]}{dt} = \mu \cdot \left([X] \cdot \left(1 - \frac{[X]}{[X]_{\text{max}}} \right) \right)$$

$$X = \frac{X_0 \cdot \exp(\mu \cdot t)}{1 - \frac{X_0}{X_{\text{max}}} \cdot \left[1 - \exp(\mu \cdot t) \right]}$$

3. LOGISTIC EQUATION

1. Non structured Nor Segregated models

➤ Growth Models.

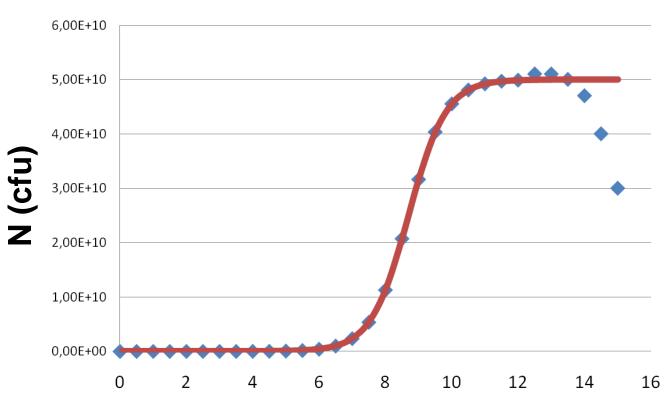
$$X = \frac{X_0 \cdot \exp(\mu \cdot t)}{1 - \frac{X_0}{X_{\text{max}}} \cdot \left[1 - \exp(\mu \cdot t)\right]}$$

It predicts exponential and stationary phase,

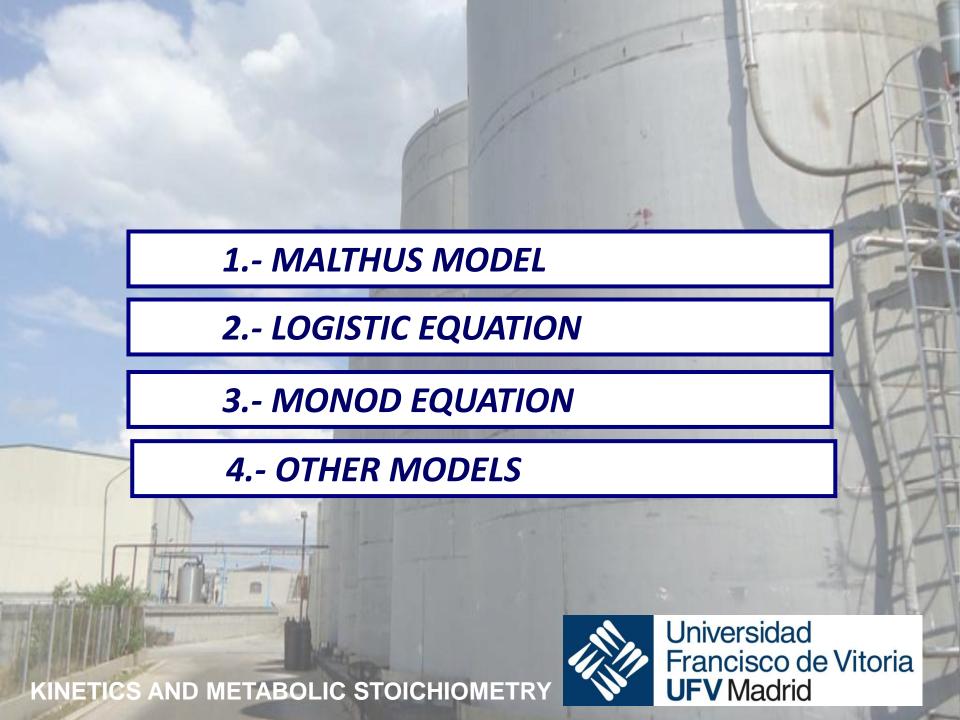
but it does not consider the influence of the substrate (limiting nutrient).

1. Non structured Nor Segregated models

$$t = 0 \Leftrightarrow [X] = [X]_0$$
$$t = t_{lat} \Leftrightarrow [X] = [X]_0$$


$$\begin{cases} 0 \le t < t_{lat} :: \frac{d[X]}{dt} = 0 \Rightarrow X = X_0 \\ t \ge t_{lat} :: \frac{d[X]}{dt} = \mu \cdot X \cdot \left[1 - \frac{X}{X_{\text{max}}}\right]; \Rightarrow X = \frac{X_0 \cdot \exp(\mu \cdot [t - t_{lat}])}{1 - \frac{X_0}{X_{\text{max}}} \cdot [1 - \exp(\mu \cdot [t - t_{lat}])]} \end{cases}$$

3. LOGISTIC EQUATION


1. Non structured Nor Segregated models

➤ Growth Models.

Time (h)

4. MONOD DEQUATION

1. Non structured Nor Segregated models

➤ Growth Models.

$$\frac{d[X]}{dt} = \mu \cdot f([X], [S])$$

$$\frac{d[X]}{dt} = \mu([S]) \cdot [X] = \frac{\mu_m \cdot [S]}{K_S + [S]} \cdot [X]$$

Predicts specific growth rate according to substrate concentration

Under limiting substrate conditions.

Hyperbolic kinetics ≈ Michaelis-Menten kinetics for an enzymatic process

4. MONOD DEQUATION

1. Non structured Nor Segregated models

➤ Growth Models.

$$\frac{d[X]}{dt} = \frac{\mu_m \cdot [S]}{K_S + [S]} \cdot [X]$$

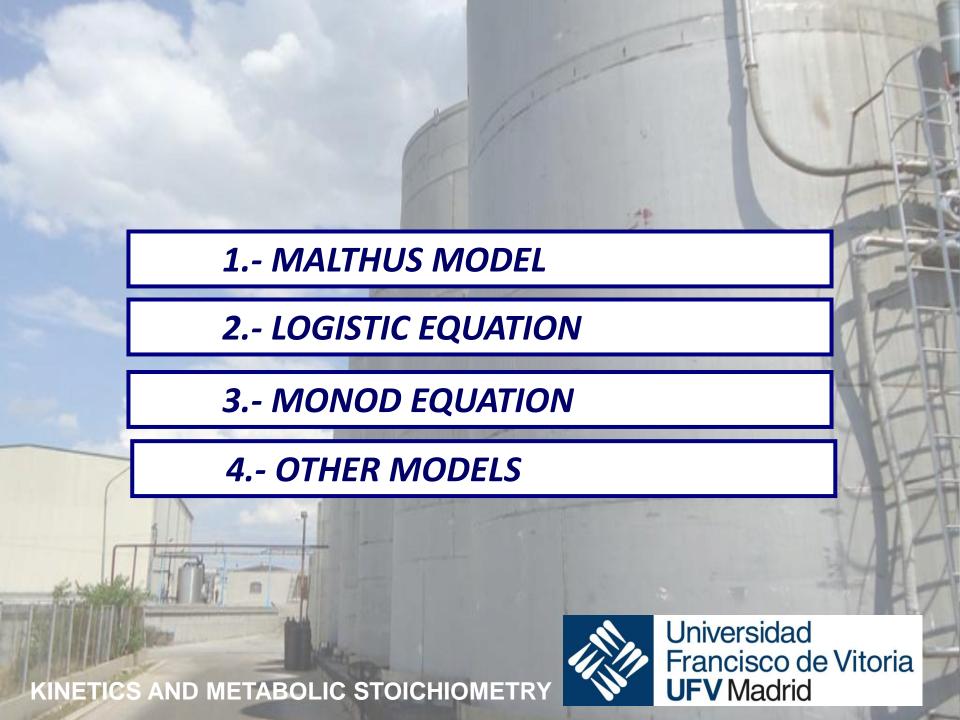
 μ = specific growth rate for a particular substrate concentration

 μ_{m} = maximum = specific growth rate for a particular substrate concentration

S = substrate concentration

 $\mathbf{K_s}$ = saturation constant ([S] for μ = 1/2 de μ _m)

4. MONOD DEQUATION


1. Non structured Nor Segregated models

$$\frac{d[X]}{dt} = \mu([S])\cdot[X] = \frac{\mu_m \cdot [S]}{K_S + [S]}\cdot[X]$$

$$K_S <<[S] \Rightarrow \frac{d[X]}{dt} = \mu_m \cdot [X]$$
Malthus

$$K_S >> [S] \Rightarrow \frac{d[X]}{dt} = \frac{\mu_m}{K_S} \cdot [S] \cdot [X]$$
 M'Kendrick y Pai

5. OTHER MODELS

1. Non structured Nor Segregated models

Growth Models.

Models

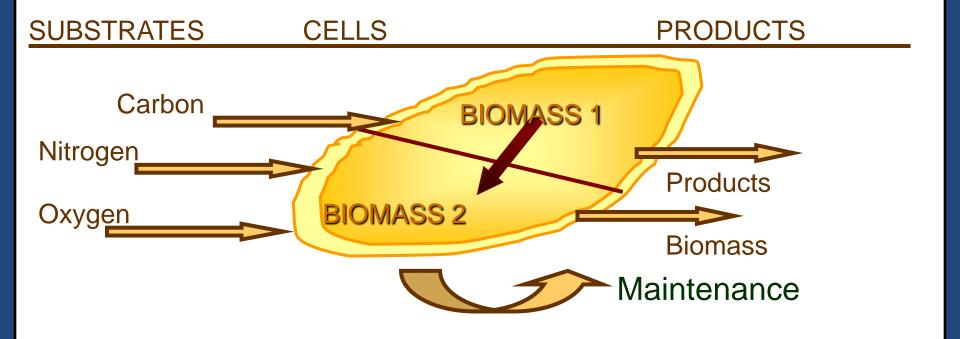
- Models describing both growth and substrate uptake.
- Models describing growth, substrate uptake and product generation.

2. Structured but Non Segregated

- Cell Models
- Metabolic Models
- Chemically Structured Models.

3. Non structured but Segregated

- Filamentous microorganisms
- Mixed culture



Other Models

5. OTHER MODELS

2. Structured but Non Segregated

Cell Models

5. OTHER MODELS

2. Structured but Non Segregated

Cell Models

Model of Wiliams (1967)

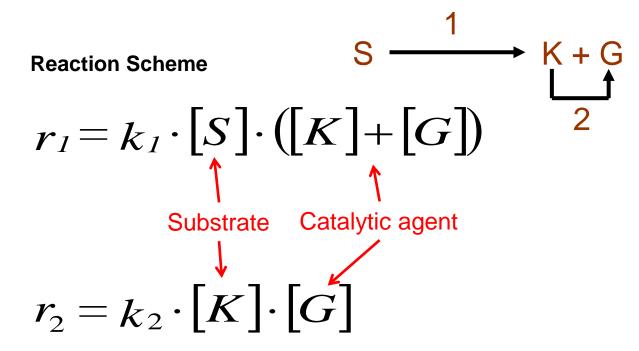

Two compartment:

- Synthetic section (K): RNA + small biomolecules.
- Genetic-Structural section (G): DNA + proteins

Hypothesis

Cell Division ←→ G section doubling its size

Reaction Scheme



2. Structured but Non Segregated

Cell Models

Model of Wiliams (1967)

2. Structured but Non Segregated

Cell Models

Model of Wiliams (1967)

Reaction Scheme

$$r_1 = k_1 \cdot [S] \cdot ([K] + [G])$$
$$r_2 = k_2 \cdot [K] \cdot [G]$$

$$\frac{d[S]}{dt} = -r_1; \frac{d[K]}{dt} = r_1 - r_2; \frac{d[G]}{dt} = r_1 + r_2$$

5. OTHER MODELS

1. Non structured Nor Segregated models

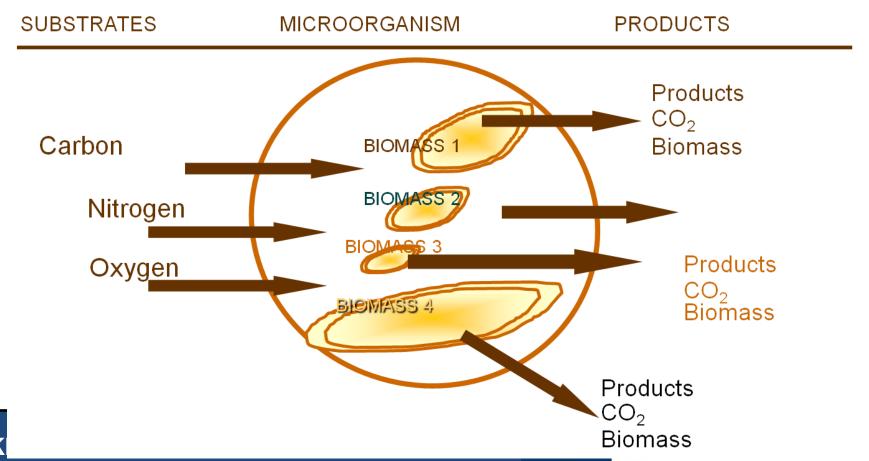
- Growth Models.
- Models describing both growth and substrate uptake.
- Models describing growth, substrate uptake and product generation.

2. Structured but Non Segregated

- Cell Models
- Metabolic Models
- Chemically Structured Models.

3. Non structured but Segregated

- Filamentous microorganisms
- Mixed culture



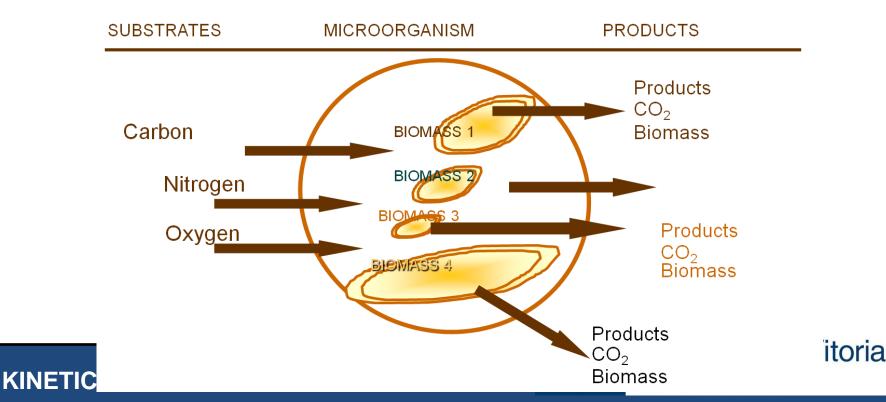
Models Malthus Logistic Equation Monod Other Models

5. OTHER MODELS

3. Non structured but Segregated

- Filamentous microorganisms
- Mixed culture

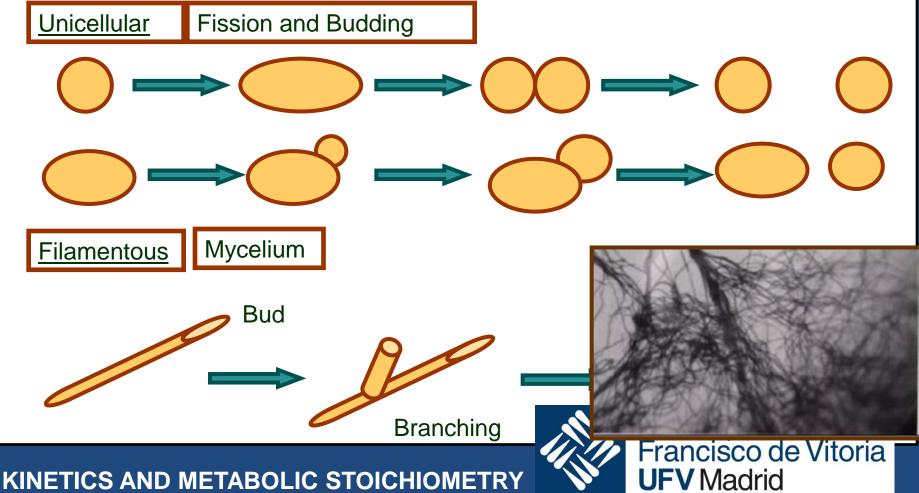
Models Malthus Logistic Equation Monod Other Models


5. OTHER MODELS

3. Non structured but Segregated

SEGREGATION based on a property distribution function

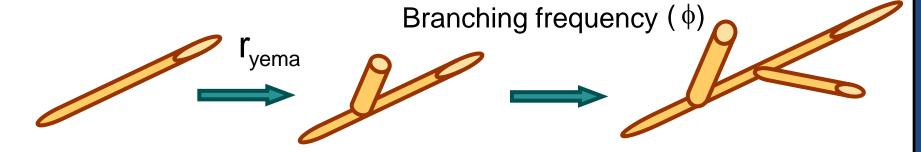
Cellular age: difficult to measure and to relate to composition


Biomass: filamentous fungi.

5. OTHER MODELS

3. Non structured but Segregated

Filamentous microorganisms



5. OTHER MODELS

3. Non structured but Segregated

> Filamentous microorganisms

Growth

SECTION II: KINETICS AND BIOREACTOR DESIGN:

LESSON 9.3. - Enzymatic kinetics, microbial kinetics and metabolic stoichiometry – Models and Metabolic Stoichiometry

JAVIER CALZADA FUNES

Biotechnology Department, Biosciences School

UNIVERSIDAD FRANCISCO DE VITORIA